Théorème d'Ascoli

Recasage : 201 / 203 / 205 / 228

Référence: Daniel Li cours d'analyse fonctionnelle page 191

Théorème 1

Soit (X, d) un espace métrique compact et une partie $\mathscr{F} \subseteq (\mathscr{C}(X, \mathbb{C}), \|.\|_{\infty})$. Alors \mathscr{F} est relativement compacte si et seulement si \mathscr{F} est bornée et équicontinue.

Preuve.

 \Longrightarrow : Supposons que $\mathscr F$ soit relativement compacte. Montrons alors que $\mathscr F$ est équicontinue et bornée.

- Comme \mathscr{F} est relativement compacte alors $\overline{\mathscr{F}}$ est bornée, il en va donc de même pour \mathscr{F} .
- Montrons que \mathscr{F} est équicontinue. Soit $x_0 \in X$ et soit $\varepsilon > 0$, comme \mathscr{F} est relativement compact \mathscr{F} est en particulier précompacte; Il existe donc un nombre fini de fonctions $f_1, \dots, f_p \in \mathscr{F}$ telles que :

$$\mathscr{F} \subseteq \bigcup_{j=1}^{p} B\left(f_{j}, \frac{\varepsilon}{3}\right)$$

Comme chaque f_j sont continues en x_0 donc :

$$\forall \varepsilon > 0 \ \exists \delta_j > 0 \ \forall x \in X \ d(x, x_0) \le \delta_j \Longrightarrow |f_j(x) - f_j(x_0)| \le \frac{\varepsilon}{3}$$

On pose alors $\delta = \min_{j \in [\![1:p]\!]} \delta_j$. Soit $f \in \mathscr{F}$ alors il existe $j \in [\![1:p]\!]$ tel que $f \in B\left(f_j, \frac{\varepsilon}{3}\right)$ alors :

$$|f(x) - f(x_0)| = |f(x) - f_j(x) + f_j(x) - f_j(x_0) + f_j(x_0) - f(x_0)|$$

$$\leq |f(x) - f_j(x)| + |f_j(x) - f_j(x_0)| + |f_j(x_0) - f(x_0)|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Finalement on à :

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X \ d(x, x_0) \le \delta \Longrightarrow |f(x) - f(x_0)| \le \varepsilon$$

Ceci $\forall f \in \mathscr{F}$ donc \mathscr{F} est équi
continue.

 $\underline{\Leftarrow}$: Supposons que \mathscr{F} soit équicontinue et bornée. Montrons alors que \mathscr{F} est relativement compacte. Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathscr{F} . Montrons alors qu'il existe une sous suite de Cauchy de la suite (f_n) (pour la norme $\|.\|_{\infty}$) et comme $\overline{\mathscr{F}}$ est complet (fermé dans un complet) ceci assurera le fait que \mathscr{F} est relativement compacte. Le théorème de Heine assure que \mathscr{F} est uniformément équicontinue c'est à dire :

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x,y \in X \ d(x,y) \leq \delta \Longrightarrow |f(x) - f(y)| \leq \varepsilon \quad \forall f \in \mathscr{F}$$

Comme \mathscr{F} est bornée alors il existe M>0 tel que $||f_n||_{\infty}\leq M$. On considère $\Delta=\{x_1,x_2,\cdots\}$ une partie dénombrable dense de X (qui existe car X est compacte donc séparable). Ainsi on à donc $\forall n\geq 1\ \forall k\geq 1\ |f_n(x_k)|\leq M$.

La suite numérique $(f_n(x_1))$ étant bornée, on peut en extraire une sous suite convergente (d'après le théorème de Bolzano Weierstrass) noté $(f_{1,n}(x_1))$. Plaçons nous en x_2 la suite $(f_{1,n}(x_2))$ est une suite bornée donc on peut également en extraire une sous suite convergente noté $(f_{2,n}(x_1))$. On peut donc récursivement extraire des sous suites $(f_{q,n}(x_k))$ convergente pour $1 \le k \le q$. En vertu du procédé d'extraction diagonale on pose $g_n(x_k) = f_{n,n}(x_k)$ qui est une sous suite convergente pour toute les valeurs de x_k pour $k \le n$.

Montrons maintenant que la suite (g_n) est de Cauchy pour la norme uniforme. Pour $k \ge 1$ soit $\delta > 0$. Comme Δ est dense dans X alors :

$$X = \bigcup_{k=1}^{\infty} B(x_k, \delta)$$

Comme X est compacte, d'après la propriété de Borel-Lebesgue on peut en extraire un sous recouvrement finie soit $K \ge 1$ tel que :

$$X = \bigcup_{k=1}^{K} B(x_k, \delta)$$

Comme la suite $(g_n(x_k))_n$ est convergente elle est donc de Cauchy donc :

$$\forall \varepsilon > 0 \ \exists N_k \ge 0 \ \forall n, m \ge N_k \quad |g_n(x_k) - g_m(x_k)| \le \frac{\varepsilon}{3}$$

Posons alors $N = \max_{k \in [\![1],K]\!]} N_k$ et soit $x \in X$ alors il existe $k \leq K$ tel que $x \in B(x_k,\delta)$ alors $d(x,x_k) \leq \delta$. Alors pour $m,n \geq N$

$$|g_{m}(x) - g_{n}(x)| = |g_{m}(x) - g_{m}(x_{k}) + g_{m}(x_{k}) - g_{n}(x_{k}) + g_{n}(x_{k}) - g_{n}(x)|$$

$$\leq |g_{m}(x) - g_{m}(x_{k})| + |g_{m}(x_{k}) - g_{n}(x_{k})| + |g_{n}(x_{k}) - g_{n}(x)|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Donc $\forall \varepsilon > 0 \ \exists N \geq 0 \ \forall n, m \geq N \ \|g_m - g_n\|_{\infty} \leq \varepsilon$ donc (g_n) est une suite de Cauchy de $\left(\mathscr{C}(X, \mathbb{C}), \|.\|_{\infty}\right)$ qui est un espace de Banach donc converge. Ainsi de toute suite de $\overline{\mathscr{F}}$ on peut en extraire une sous suite convergente donc \mathscr{F} est relativement compacte.

Remarque.

- Il faut absolument connnaître une application du Théorème d'Ascoli
- Savoir expliquer le procédé d'extraction diagonale
- Pourquoi compacte implique séparable (Preuve ci dessous Rombaldi Éléments d'analyse réelle page 22)

Preuve.

Soit (E,d) un espace métrique compact, pour tout entier naturel $n \in \mathbb{N}^*$ on peut extraire du recouvrement $E = \bigcup_{x \in E} B\left(x, \frac{1}{n}\right)$ un sous recouvrement fini $E = \bigcup_{x \in D_n} B\left(x, \frac{1}{n}\right)$ avec D_n une partie finie de E. Montrons alors $D = \bigcup_{n \in \mathbb{N}^*}$ est dense dans E. Pour $a \in E$ et $\varepsilon > 0$ en prenant $n \in \mathbb{N}^*$ tel que $\frac{1}{n} \le \varepsilon$ (possible car $\frac{1}{n}$ tend vers 0 donc on peut trouver un tel n). Ainsi il existe $x \in D_n$ tel que $a \in B\left(x, \frac{1}{n}\right)$ donc $d(x, a) < \frac{1}{n} < \varepsilon$ et $x \in B(a, \varepsilon) \cap D$). On a donc $D \cap B(a, \varepsilon) \neq 0$ pour tout $a \in E$ et pour tout $\varepsilon > 0$ ce qui signifie que D est dense dans E. En conclusion (E, d) est séparable.

— Une applications du théorème d'Ascoli est de démontrer un théorème d'existence de solutions d'équations différentielles (en extrayant une sous suite qui converge uniformément) c'est le théorème d'Arzela Peano.

Exercice d'application: (Daniel Li Exercice 8 page 194) Pour toute fonction $f:[0;1] \longrightarrow \mathbb{R}$ on pose alors pour $x \in [0;1]$ l'opérateur:

$$(Tf)(x) = \int_0^x f(t) \ dt$$

Montrer que $T: \mathscr{C}([0;1]) \longrightarrow \mathscr{C}([0;1])$ est un opérateur (on l'appelle opérateur de Volterra) et que cet opérateur est compact.

Montrons que Tf est un opérateur continue montrons dans un premier temps que l'application est linéaire, $\forall f, g \in \mathscr{C}([0;1]) \ \forall \lambda \in \mathbb{R}$:

$$T(\lambda f + g)(x) = \int_0^x (\lambda f(t) + g(t)) dt = \lambda \int_0^x f(t) dt + \int_0^x g(t) dt = \lambda T(f)(x) + T(g)(x)$$

Montrons alors que T est continue $\forall x \in [0;1]$:

$$|T(f)(x)| = \left| \int_0^x f(t) \ dt \right| \le \int_0^x |f(t)| \ dt \le x ||f||_{\infty} \Longrightarrow ||T(f)||_{\infty} \le x ||f||_{\infty}$$

Donc T est un opérateur. Pour montrer que T est un opérateur compact on doit montrer que l'image de la boule unité de $\mathscr{C}([0;1])$ par T est relativement compact pour cela on utilise le théorème d'Ascoli on veut donc montrer que l'image de la boule unité de $\mathscr{C}([0;1])$ par T est bornée et équicontinue. On note B la boule unité :

$$B = \Big\{ f \in \mathscr{C}([0;1]) \mid \|f\|_{\infty} \le 1 \Big\}$$

- ▶ Soit $f \in B$ soit $x \in [0; 1]$ alors $|T(f)(x)| \le x ||f||_{\infty} \le 1$ car $f \in B$ ainsi T(B) est bornée.
- ▶ Soit $x, y \in [0; 1]$ $f \in B$ alors :

$$|T(f)(x) - T(f)(y)| \le \int_{y}^{x} ||f||_{\infty} dt \le ||f||_{\infty} |x - y| \le |x - y|$$

Soit $\varepsilon > 0$ alors en prenant $\delta = \varepsilon$ on a $|x - y| \le \delta \Longrightarrow |T(f)(x) - T(f)(y)| \le \varepsilon$ ce qui permet de conclure à l'équicontinuité de T(B) et donc par théorème d'Ascoli l'opérateur est compact car T(B) est relativement compact.